
Classifying measures

of biological variation

Gregorius, 2017



– Phenotypic variation is the raw material on which selection acts –

The heritability of this variation decides on

the evolutionarily adaptive significance of the selection process

Trait variation is determined by the genetic units (genotypes, populations, species)

and by the environmental conditions that participate in trait expression

Discrete patterns of variation form when

modifying effects of the environment are small (narrow norms of reaction)

and differences between genetic units become more distinct (high heritability)

Patterns of variation are therefore basically characterized by

⊲ the overall dispersion or spread of the trait

⊲ the diversity in terms of the number of distinguishable clusters of trait states
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Perception of variation means perception of differences.

Measures of difference should therefore guide attempts

to classify measures of variation.
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Difference measures

Dispersion

Diversity

Differentiation

Partitioning of variation

– division of variation among communities

– partitioning of total diversity into components

within and between communities

– identity probabilities

Duality of differentiation
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Difference measures
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Difference measures

Criteria: (a) d(x, y) ≥ 0

(b) d(x, x) = 0

(c) d(x, y) = 0 implies d(x, z) = d(y, z) for all z

d(x, y) = 0 implies d(y, x) = 0 by criterion (c); d(x, y) is not required

to be symmetric∗.

x1

x2

x3

x1 x2 x3 x4 x5 x6

x4

x5

x6

d(x i,xj) = arbitrary

d(x i,xj) = 0

Difference Matrix0.1

0.1

0.1

0.2 0.3

0.3

0.3

0.2

0.2

0.4 0.5 0.6 0.7

0.4 0.5 0.6 0.7

∗ think of behavioral differences that are not reciprocal, for example
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Difference measures

The primary partition →

Let ∼ be a relation defined by x ∼ y if d(x, y) = 0.

• ∼ is reflexive, symmetric, and transitive; it is an equivalence relation

• The equivalence classes establish a partition of the community named the primary

partition generated by the difference measure d

• The primary partition represents a trait with states (types) specified by the classes

of the partition.
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Difference measures

• Bounded difference measures are called dissimilarity measures; maximum difference

is identified with complete distinctness.

⊲ Dissimilarity measures that assume only two values (usually zero and one) are

called discrete metrics. The term binary difference measure is preferred if the

upper bound can assume any positive but fixed value (the “contrast”).

Qualitative traits can be characterized by discrete metrics.
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Dispersion

Objective: Assess the extent to which community members differ from each other.

• Dispersion measures provide the appropriate means;

⊲ they are non-negative functions of type frequencies and type differences and are

zero only if all differences are zero;

⊲ they do not decrease as differences increase.

⊲ they increase strictly with increasing upper bounds of binary differences.

• Dispersion effective difference

⊲ equals the upper bound (contrast) of a binary difference measure that, given

the observed type frequencies, generates the same dispersion as the observed

dispersion.
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Dispersion

• Maximum differences and various kinds

of average differences among commu-

nity members are typical examples of

dispersion measures. Numbers of types

(or equivalence classes) do not explicitly

enter the measurement of dispersion.
0−5 5

0−5 5

variation range = 10

variance = 10.667

The classics are maxi,j di,j and
∑

i,j pi · pj · di,j

The dispersion effective differences are

maxi,j di,j and
∑

i,j pi · pj · di,j/(1−
∑

i p
2

i )
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Dispersion

Effective numbers?

• Types are provided by the classes of the primary partition generated by the dif-

ference measure. This justifies consideration of numbers of types in dispersion

studies.

• The range over which community members vary can be viewed to be spanned by

the types specified through the primary partition; it is therefore meaningful under

certain conditions to require that dispersion should increase with number of types.

• To enable unambiguous counting of types, unit differences between them (binary

differences) and equal frequencies must be realized. Under this premise

⊲ dispersion is required to strictly increase with number of types for each binary

difference measure (the “number-characteristic” of dispersion measures).
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Dispersion

• Determination of an effective number of types requires definition of ideal commu-

nities,

(a) which realize all dispersion values occurring among the (non-ideal) communi-

ties under consideration,

(b) in which the differences between types do not vary (binary differences),

(c) in which all types are equally frequent, and

(d) in which the measure of dispersion strictly increases with the number of types.

⇒ The effective number results from equating an observed dispersion with the

dispersion of an ideal community with specified binary difference measure and

solving for the number of types in the latter. Since the number refers to

dispersion characteristics it is termed dispersion effective number of types.
>>>>
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Dispersion

CV TV

CVTV

CVTV

CVTV

The concept of effective variables

id
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TV = target variable of a community (number of types)
CV = characteristic variable of a community (dispersion, diversity)
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Dispersion

>>>>

⊲ The dispersion effective number of types depends on the chosen binary difference

measure: the number decreases strictly with increasing upper bound (contrast)

of the binary difference.
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Dispersion

• Replacement of dissimilarities by their complements, i.e. similarities, converts mea-

sures of dispersion into measures of concentration.

⊲ The procedure leading to the definition of the dispersion effective number applies

identically to similarities and thus to the definition of the concentration effective

number.
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Dispersion

Examples

dissimilarity measure 0 ≤ di,j ≤ 1, similarity measure si,j = 1− di,j
pi := type frequencies, n := number of types

• dispersion measure d̄ :=
∑

i,j pi · pj · di,j

For complete dissimilarity d̄ideal = 1− n−1 ⇒ dispersion effective number∗

= (1− d̄)−1

• concentration measure aC :=
(

∑

i pi ·
(
∑

j si,j · pj
)a−1

)
1

a−1

(0≤a 6=1)

For complete dissimilarity aCideal = n−1 ⇒ concentration effective num-

ber∗∗ = aC−1

>>>>

∗ Ricotta & Szeidl, 2009, doi:10.1016/j.tpb.2009.10.001
∗∗ Leinster & Cobbold, 2012, doi:10.1890/10-2402.1
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Dispersion

Examples

>>>>

• An effective number does not exist for the following measures of dispersion,

since they do not fulfill requirement (d) →

⊲ maxi,j di,j

⊲
∑

i pi ·
(
∑

j:j 6=i pj · di,j/(1− pi)
)

⊲
∑

i 6=j pi · pj · di,j/(1−
∑

i p
2

i )
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Dispersion

Summary

♣ Measures of dispersion summarize differences between objects without explicit

reference to numbers of types.

♣ Numbers of types enter the assessment of dispersion via the primary partition.

♣ Effective numbers of types are defined only for dispersion measures that increase

strictly with number of types when applied to binary differences and equally fre-

quent types.

♣ Not all dispersion measures have effective numbers.

Gregorius, 2017



Diversity

Gregorius, 2017



16

Diversity

Objective: Determine the variability of a community on the basis of its

number of types (the intrinsic diversity concept).

• Counting types is unambiguous in the ideal situation of equal differences and

equal representations among types ⇒ uniform distribution of the primary partition

generated by a discrete metric.

⊲ In this ideal situation, measures of diversity are non-negative and strictly increas-

ing functions of the number of classes in the primary partition.

⊲ Non-uniform distributions: measures of diversity become non-negative functions

of sets of positive values (representations) summing to one; variable represen-

tations of types are provided for by fulfillment of the evenness criterion*.
>>>>

* diversity never decreases as the difference in representation between two types de-
creases while the sum of their representations remains the same – measures of evenness
characterize the form of frequency profiles, they are not measures of variation
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Diversity

>>>>

⊲ Types (classes of partitions) are represented by non-negative numbers that can

specify e.g. ⋄ the number of community members showing a type, ⋄ the area

occupied by carriers of a type, ⋄ the total biomass of the carriers of a type, ⋄ the

average similarity of a type to all community members*. All of these enter the

measurement of diversity after normalization by their sums.

⊲ An effective number of types can be determined following the procedure de-

scribed for dispersion measures and applying the same specification of ideal

communities (substituting dispersion by diversity). This results in a diversity

effective number of types. Diversity effective numbers are diversity measures.

* termed “relative abundance of species similar to the i-th”,
∑

j
sij · pj , in Leinster &

Cobbold, 2012, doi:10.1890/10-2402.1
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Diversity

Examples

pi := relative representation of the i-th type (only pi > 0 considered)

diversity measure diversity effective number

1−
∑

i p
a
i , a > 1

(
∑

i p
a
i

)
1

1−a (Rényi diversity∗ of order a)

∑

i p
a
i , 0 ≤ a < 1

(
∑

i p
a
i

)
1

1−a ”

−
∑

i pi · log pi
∏

i p
−pi

i (Rényi diversity of order a = 1)

∗ also called Hill numbers; Hill gave credit to Rényi
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Diversity

• Variable differences – Adherence to the intrinsic diversity concept entails relating

differences to partitions ⇒ combination of the classes of the primary partition

forms hierarchically organized higher order partitions referring to higher orders of

difference.

⊲ Higher order partitions typically result from application of clustering methods to

the difference measure under consideration.

⊲ Each clustering level gives rise to a partition the diversity of which can be

determined. Clustering levels can be considered as levels of resolution*.

⊲ Plotting the diversity of each partition against its corresponding clustering level,

one obtains diversity portraits in the form of decreasing step functions.

* with higher resolution going along with finer partitions
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Diversity

Example

G-clustering of five types yielding three hierarchically organized higher order

partitions in addition to the primary partition.

differences

types x1 x2 x3 x4 x5 freq

x1 0 2 5 4 4 10
x2 2 0 4 4 5 20
x3 5 4 0 1 3 30
x4 4 4 1 0 2 30
x5 4 5 3 2 0 10

x1 x2 x3 x4 x5

5

4

3

2

1

0
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Diversity

10 2 3 4 5
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5
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5
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4

5

10 2 3 4 5

1
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3

4

5

Diversity Portraits
Renyi diversity a = 0 Renyi diversity a = 1

Renyi diversity a = 2 Renyi diversity a = infinity

difference level difference level

difference level difference level
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Diversity

Conceptual problem: Considering the classes of a partition as distinct types is ques-

tionable since levels of distinctness among classes may vary and since the intrinsic

diversity concept is built on qualitative traits and thus on equally distinct types.

Instead of partitioning variation into classes it may be meaningful to consider variable

differences and frequencies as part of the type representation (such as the average

similarity of a type to all community members). However, this awaits conceptual

substantiation.
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Diversity

Connecting diversity to dispersion –

The number-characteristic of dispersion measures can be extended to require that

the evenness criterion is realized for binary difference measures. Such dispersion

measures are termed diversity-compatible.

Example:
[

∑

i pi ·
(
∑

j dij · pj
)a
]1/a

for a ≤ 3 and a 6= 0.

For binary difference measure with contrast d: d · [
∑

i pi · (1− pi)
a]

1/a
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Diversity

Summary

♣ The intrinsic diversity concept rests on discretizable and countable units of per-

ception. The units combine to form a partition of the community.

♣ Variable frequencies are taken into account by the evenness criterion.

♣ Variable differences can be considered via hierarchically organized partitions that

relate to difference levels.

Yet, variable distinctness between the classes of partitions raises a conceptual

problem.

♣ Diversity effective numbers link general diversity measures to the intrinsic diversity

concept.

♣ The conceptual connection between diversity effective numbers and dispersion

effective numbers is provided by diversity-compatible dispersions.
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Differentiation

Objective: Determine the dissimilarity among the communities that make up a

metacommunity.

• Differentiation involves two tiers of difference, ⋄ differences between individual

members of the metacommunity and ⋄ differences between communities. Both

enter the assessment of differentiation in terms of dissimilarities.
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Differentiation

• There are at least two ways of conceiving metacommunity differentiation,

⋄ as dispersive differentiation, where the focus is on the dispersion among com-

munities, and

⋄ as complementary differentiation, where the focus is on the unshared (comple-

mentary) contributions of each community to the metacommunity.

⊲ To become a differentiation measure of a metacommunity, it is required that

the respective measure

(i ) is bounded and assumes its maximum only if all communities are mutually

completely dissimilar, and

(ii ) does not decrease with increasing trait resolution.*

* Let d and d′ be two difference measures defined on the same community, and let T
and T ′ be the two traits generated by the difference measures. Then difference d′ (and
thus trait T ′) represents an increased resolution of difference d (and thus of trait T ), if
for any two members µ1 and µ2 of the community d′(µ1, µ2) ≥ d(µ1, µ2) with strict
inequality for at least one pair of members.
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Differentiation

• Minimum differentiation – Basically, the dissimilarity between two communities

can be assessed by the amount of change required in the trait distribution of one

community to match the trait distribution of the other.

⊲ Changes consist of a frequency shift between types weighted by their dissimilar-

ities. Given a quantification of frequency shifts, minimization of changes leads

to a unique measure of differentiation.
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Differentiation

Example

For discrete metrics and a metacommunity consisting of two communities,

a measure of minimum differentiation used in many fields is

1

2

∑

i |pi − qi|

where pi is the relative representation of the i-th class of the primary par-

tition of the metacommunity in one community, and qi is the analogous

representation in the other community.
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Differentiation

• Multiple communities – Metacommunity differentiation must reflect the dissimi-

larities between its constituent communities.

⊲ Among the various approaches, the comple-

mentarity approach relies on the symmetric

(multiple) set difference. The set difference

summarizes the uniqueness of each community

for its trait distribution. The corresponding

measure becomes

∆SD =
∑

x
P (C = x) ·∆(C = x,C 6= x).

In this expression P (C = x) denotes the rela-

tive representation of community x, and

∆(C = x,C 6= x)

denotes the differentiation of community x from the remainder (C 6= x) of the meta-

community. In particular, ∆(C = x,C 6= x) may quantify the minimum amount of

change required in the trait distribution of community x to match the trait distribution

in the remainder.

set difference
symmetric
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Differentiation

• Differentiation levels – Consider the primary partition and the higher order par-

titions obtainable from application of an appropriate clustering method to the

metacommunity → partitions correspond to difference levels obtained from

the clustering method → type distributions within communities result from

intersection of the partition classes with the communities.

⊲ For each partition the differentiation of the metacommunity can be determined.*

⊲ The differentiation measure quantifies the degree to which the partition sepa-

rates the communities.

⊲ Plotting the differentiation obtained for each partition against its corresponding

difference levels, one obtains a differentiation portrait**.

* where the differentiation measure can be based on the discrete metric associated
with the partition, or it can be chosen to consider variable differences via the minimum
differentiation created by the partition
** corresponding to the diversity portrait
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Differentiation

Summary

♣ Differentiation measures quantify dissimilarities between communities with re-

spect to type frequencies and type differences. They reach a maximum only for

complete distinctness among communities.

♣ For metacommunities consisting of multiple communities, differentiation can be

conceived of in two ways: ⋄ dispersion between communities and ⋄ uniqueness of

communities.

♣ For variable differences between types, differentiation can be considered at various

levels of difference.

♣ Effective numbers and diversities are not at issue in the above concept of differ-

entiation.*

* to emphasize the fact that only differences in type frequencies between communities
are considered, the term compositional differentiation is occasionally used in this context.
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Partitioning of variation

Objective: Determine degrees to which the total variation in a metacommunity is

divided (partitioned) among the communities.

Principles of partitioning

(i) specify tendencies of individuals of the same type to occur in the same com-

munity (concentration principle) versus

(ii) tendencies of individuals of different type to occur in different communities

(division principle).

⊲ Complete concentration is reached if communities are completely differentiated

(share no types).

⊲ Complete division is reached if each community consists of one type (monomor-

phism, fixation).

⊲ The absence of any of the two tendencies indicates identity in type composition

among the communities (absence of differentiation).
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Partitioning of variation

Implications of the concentration principle for diversity →

• With increasing concentration, communities share ever fewer individuals of the

same type and finally become completely distinct for their type distributions.

• Keeping the marginal distributions of types and community membership constant

during this process, one expects both the average number of types per commu-

nity and the number of type-community combinations to decrease with increasing

concentration.
>>>>
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Partitioning of variation

>>>>

• According to common perceptions, merging differentiated communities into a

metacommunity should result in an excess of diversity over the diversity within

communities. Only identity in composition among the communities (absence of

differentiation) results in zero excess.

⊲ Conceptually consistent measures of diversity within communities are well-

defined for the generalized notion of diversity measures.*

⊲ In community-ecology, the symbols γ and α are used for metacommunity-

diversity and diversity within communities (α ≤ γ); a third component, termed

β-diversity is addressed as “diversity between communities”, but is not directly

associated with differentiation between communities.

• Measures of concentration of type-diversity to communities are termed measures

of diversity-oriented differentiation.

* Gregorius, 2014, doi:10.5194/we-14-51-2014
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Partitioning of variation

Examples

Two kinds of measures of concentration of type-diversity to communities
(diversity-oriented measures of differentiation)

Dm :=
vT − vT |C

vTC − vT |C
and D′

m :=
1− vT |C/vT

1− vT |C/vTC

where vT := metacommunity diversity (for trait T , γ-diversity),
vT |C := trait diversity within communities (α-diversity),
vTC := joint diversity of trait and community membership.

When applied to Rényi-diversities for equal community sizes (in which case
vTC = vT |C · vT ), D′

m becomes Jost’s∗ D, and Dm becomes Jost’s∗∗

generalization of the “turnover rate per sample”.

∗ Jost, 2008, doi:10.1111/j.1365-294X.2008.03887.x, eq. 10
∗∗ Jost, 2007, doi: 10.1890/06-1736.1, eq. 25
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Partitioning of variation

Implications of the division principle for diversity (apportionment) →

• With increasing division of type variation among communities the number of dif-

ferent types decreases in each community until each community is dominated by

a single type.

⊲ Measures of apportionment of diversity therefore focus on the diversity within

communities.
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Partitioning of variation

Examples

Two kinds of measures of division (apportionment) of type diversity among
communities∗

Fp =
vT − vT |C

vT − vmin
and F ′

p =
Fp

veT |C

=
(veT /v

e
T |C)− 1

veT − 1

veT := diversity effective number of vT
veT |C := diversity effective number of vT |C (effective number of types

within communities)
vmin := value of the diversity measure v for monomorphism (equals 1 for

the diversity-effective numbers ve)

∗ Gregorius, 2010, doi:10.3390/d2030370
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Partitioning of variation

In community ecology:

• More recently β-diversity is agreed to be specified as an effective number of

communities based on their type distributions.

⊲ Reference to β-diversity as an effective number of “distinct” communities is

questionable.

⊲ The apportionment principle as quantified by Fp and F ′
p provides more di-

rect access, with effective numbers of communities resulting as veT /v
e
T |C and

veT − veT |C + 1 , respectively. These reflect the common multiplicative and

additive versions of β-diversity.

⊲ β-diversity thus presents itself as an “apportionment effective number of com-

munities” or more explicitely as a number of effectively monomorphic commu-

nities.*

* Gregorius, 2016, doi:10.1016/j.jtbi.2016.08.037
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Partitioning of variation

In population genetics:

The most common measure of genetic diversity is Simpson’s index v = 1−
∑

i p
2

i

with diversity effective number ve = 1/
∑

i p
2

i , where pi equals the relative fre-

quency of the i-th allele or some more complex genetic type.

For pij := frequency of the i-th genetic type in the j-th population (
∑

i pij = 1),

pi := frequency of the i-th genetic type in the metapopulation, cj := relative size

of the j-th population, one obtains vT = 1−
∑

i p
2

i , vT |C =
∑

j cj · (1−
∑

i p
2

ij).

⊲ In this case, either for Fp applied to Simpson’s index, or F
′
p applied to the effective

number of the index, one obtains

GST =

∑

j cj ·
∑

i p
2

ij −
∑

i p
2

i

1−
∑

i p
2

i

⇒ GST measures apportionment of genetic diversity but not differentiation.
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Partitioning of variation

Combined apportionment and differentiation* →

• Differentiation or apportionment

⊲ No distinction is made between concentration and division tendencies towards

the extreme where either complete concentration (differentiation) or complete

division (monomorphism) is reached:

F ∗
p =

Fp

F̃p

F ′∗
p =

F ′
p

F̃ ′
p

where F̃p = [vTC−vT |C ]/[vTC−vmin] and F̃ ′
p = [veTC−veT |C ]/[v

e
T |C(v

e
TC−1)]

Population genetics: Applying F ′∗
p to the “effective number of alleles” 1/

∑

i p
2

i

as measure of diversity yields the measure G′
ST of PW Hedrick (Evolution,

59(8); 1633-1638, 2005). >>>>

* Gregorius, 2016, doi:10.1016/j.jtbi.2016.08.037
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Partitioning of variation

>>>>

• Differentiation and apportionment

⊲ Both tendencies, concentration and division, are realized simultaneously, with the

extreme reached for both complete concentration (differentiation) and complete

division (monomorphism):

F ◦
p =

vT − vT |C

vTC − vmin
F ′◦
p = F ◦

p ·
vTC

vT

Gregorius, 2017
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Partitioning of variation

Identity probabilities

• One of the most frequently taken approaches to partitioning variation uses prob-

abilities of sampling two individuals of identical or different type. GST is one

example. Measures of diversity are not explicitly involved.

⊲ Applying explicit sampling within and between communities with PT , PW and

PB as probabilities of sampling individuals of different type in the metacommu-

nity, within communities, and between communities, one arrives at

GST =
PT − PW

PT
and DST =

PT − PW

PT − PW + 1− PB

as measures of apportionment and differentiation, respectively.

⊲ GST and DST can be used to assess the share that division and concentration

tendencies have in the partitioning of variation:

GST > DST if division tendencies outperform concentration tendencies.
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Partitioning of variation

• When differences between types vary, partitioning of variation is possible, pro-

vided the differences are dissimilarities (bounded from above by 1), and the

matrix of dissimilarities is conditionally negative definite. (Gregorius, 2014,

doi:10.1007/s12080-014-0220-1)

⊲ Under this premise, the previous probabilities of sampling explicitely within and

between communities are replaced by their corresponding average dissimilarities:

PT → ET (average dissimilarity in the metacommunity), PW → EW (average

dissimilarity within communities), and PB → EB (average dissimilarity between

communities)

G◦
ST =

ET − EW

ET
and D◦

ST =
ET − EW

ET − EW + 1− EB

are the corresponding measures of apportionment and differentiation, respec-

tively. The interpretations in terms of division and concentration tendencies

remain the same.
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Summary

♣ Partitioning of diversity chiefly follows two principles of distributing type variation

over communities: (a) concentration of carriers of the same type in the same com-

munity (differentiation), and (b) division of different types between communities

(apportionment); combinations of these principles are yet poorly studied.

♣ Partitioning in the common sense of division of variation among communities

cannot be used for an assessment of differentiation between them (confusing

apportionment with differentiation).

♣ Measures of β-diversity rely on the division principle. When expressed as effective

numbers of communities, they address the number of effectively monomorphic

rather than the number of effectively distinct communities.

♣ Partitioning of identity probabilities obtained from explicit sampling within and

between communities allow ranking of division and concentration tendencies on

the basis of measures of apportionment and differentiation.
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The dual perspective of variation

Perspective: Just as communities may differ for the trait states of their members

(CDT) may trait states differ for the community membership of their

carriers (TDC).

⊲ TDC is the dual perspective of CDT and vice versa.

⇒ TDC is relevant e.g. in studies on the adaptational versatility of genotypes or

species (e.g. specialists vs. generalists, habitat selection):

CDT = communities determine on which type to accept,

TDC = types determine in which community to settle.
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The dual perspective of variation

TC

joint distribution of trait state

and community membership

TC TC

trait states differentiated for

community memberships (TDC)for trait states (CDT)

communities differentiated

C2

C3

C2

C3

C1

C3

T1

T2

T2

T3

T4

T4

T1

C1

T2

T4

T4

T3

T2

T1

C1

C2

C3

C1

C1

C2

C3

C3

C2

C3

T2

T3

T4

T1

T1
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The dual perspective of variation

• All of the above considerations on (compositional) differentiation and partitioning

of variation can be applied to TDC by swapping trait state (type) with com-

munity membership. In particular, the concentration and division principle now

read (i) members of the same community tend to show the same type versus

(ii) members from different communities tend to differ in type.

⊲ While under CDT, communities are completely differentiated when each
type occurs in only one community,
under TDC, types are completely differentiated when each community is
monomorphic.

Conversely,

⊲ While under CDT, communities are monomorphic when different types do
not occur in the same community,
under TDC, each type is confined to a single community when communities
are completely differentiated.
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The dual perspective of variation

• Even though what appears as differentiation under CDT appears as apportionment

under TDC and vice versa, measuring differentiation under the CDT perspective

cannot be equated to measuring apportionment under the TDC perspective and

vice versa.

The dual perspective of variation still awaits awareness in community ecology and

population genetics
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